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Abstract

A numerical method for direct simulations of boiling flows is presented. The method is similar to the front tracking/

finite difference technique of Juric and Tryggvason [Int. J. Multiphase Flow 24 (1998) 387], where one set of conserva-

tion equations is used to represent the mass transfer, heat transfer, and fluid flow in the liquid and the vapor, but

improves on their numerical technique by elimination of their iterative algorithm. The justification of the mathematical

formulation is presented and the numerical method and the code is validated by comparison of the results with the exact

solutions of a few analytical problems. A grid refinement test for film boiling on a horizontal surface shows the con-

vergence of results.

� 2004 Elsevier Ltd. All rights reserved.

Keywords: Film boiling; Front tracking; Liquid/vapor phase change; Direct numerical simulation
1. Introduction

Boiling flows are central to many industrial and nat-

ural processes. The high heat transfer rate and the ability

of fluids to store large amount of energy in the form of

latent heat make boiling particularly important in large-

scale energy generation and thermal energy storage.

Because of the large volume change and the high tem-

peratures involved, however, consequences of design or

operational errors can be catastrophic, and accurate pre-

dictions of heat transfer and fluid flow are fundamental

for safe operations. Although boiling has been studied

extensively, a more basic understanding of the subject

has been hindered by the small spatial and temporal

scales which prevent accurate experimental measure-

ments. Experimental and analytical studies in the past
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have resulted in numerous empirical correlations, each

applicable to specific conditions under which it has been

developed. With the advent of numerical techniques for

direct numerical simulations of boiling flows in the past

few years, the prospect of using numerical simulations to

study the transient and dynamic aspects of liquid/vapor

phase change has become more promising. The phase

change from liquid to vapor usually takes place in a

highly unsteady manner where the phase boundary is

very convoluted. Computations of boiling therefore re-

quire the correct incorporation of the unsteady phase

boundary.

Direct numerical simulations of multifluid flows

started nearly as early as computations of single-phase

flows with the pioneering work of Harlow and Welch

[2]. However, methods for such flows proved to be much

more difficult than that for single-phase flows due to the

difficulty in handling unsteady fluid interfaces. Further-

more, essentially all methods for multiphase flows have

ignored phase changes. For a review of such methods

see, for example, articles in a special issue of the Journal
ed.
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Nomenclature

A(t) amplitude

c specific heat

�g gravity

Gr the Grashof number,
qvðql�qvÞgl3s

l2
v

h enthalpy

I a Heaviside function

I Idemfactor

Ja the Jacob number,
cvðTw�T satÞ

hfg

k thermal conductivity (also wave number)

m mass flux at the phase boundary

n growth rate

�n unit vector normal to the interface and

pointing toward the vapor

Nu the Nusselt number, � ls
ðTw�T satÞ

oT
oy jy¼0

Pr the Prandtl number,
lvcv
kv

q heat flux at the phase boundary

T temperature

t time

�u velocity

�x position coordinates

Greek symbols

d delta function

j curvature

l viscosity

q density

r surface tension

s shear stress tensor

Subscripts

f front

l liquid

v vapor

fg (vapor–liquid)

sat saturation

1 superheated

Superscripts

n time

Æ per unit time
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of Computational Physics (volume 169), published

recently.

Numerical simulations of liquid/vapor phase change

have, until recently, relied on a number of simplifica-

tions. Examples of such computation can be found

in Lee and Nydahl [3] who simulated the growth of

a vapor nucleus at a wall, and Patil and Prusa [4]

who simulated evaporation of a bubble in a super-

heated liquid. In both studies, however, the bubble

was assumed to remain spherical during its growth.

More advanced computations started with Welch [5],

who simulated a fully deformable, two-dimensional

bubble using moving triangular grids. He was, how-

ever, only able to follow the bubble for a relatively

short time due to the distortion of the grids. Similarly,

Son and Dhir [6] used a moving body-fitted coordinate

system to simulate film boiling for both two-dimen-

sional and axisymmetric flows, but were subject to

similar limitations as Welch. The limitation to modest

deformation of the phase boundary was overcome by

Juric and Tryggvason [1] who developed a front-track-

ing method and Son and Dhir [7] who used a level

set method. Other simulations include film boiling

computations of Welch and Wilson [8] using a VOF

technique, film boiling and explosive boiling computa-

tions of Esmaeeli and Tryggvason [9,10] using a front

tracking/finite difference technique, film boiling compu-

tations of Shin and Juric [11] using a front tracking/

level contour technique, pool-boiling computations of

Dhir and collaborators [12–16] using a level set meth-
od, and nucleate boiling simulation of Yoon et al. [17]

using a mesh-free method (MPS-MAFL). With the

exception of [9–11], these investigations have been

for two-dimensional systems.
2. Formulation and numerical method

2.1. Mathematical formulation

The governing equations for boiling flows are the

conservation of mass and momentum, and the balance

of thermal energy equations. In conservative forms these

equations are:

oq
ot

þr � q�u ¼ 0; ð1Þ

oq�u
ot

þr � q�u�u ¼ �rp þ q�g þr � lðr�uþr�uT Þ; ð2Þ

oqcT
ot

þr � qc�uT ¼ r � krT : ð3Þ

Here, we neglect the viscous dissipation term in the en-

ergy equation. The above equations are valid inside each

phase and at the interface the jump conditions for mass,

momentum, and energy must be used:

qlð�ul � �ufÞ � �n ¼ qvð�uv � �ufÞ � �n ¼ _m; ð4Þ

_mð�uv � �ulÞ ¼ ðsv � slÞ � �n� ðpv � plÞI � �nþ rj�n; ð5Þ
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_mhfg ¼ _q ¼ kv
oT
on

����
v

� kl
oT
on

����
l

: ð6Þ

Here, �ul and �uv are fluid velocity at the liquid and vapor

side of the interface, �uf is the interface velocity, and _m is

the evaporation rate at the interface. In the derivation of

Eq. (6), we have assumed that the interface temperature

Tf is the same as the saturation temperature at the sys-

tem pressure, i.e., Tf = Tsat(psys).

In numerical implementation, we use the so-called

‘‘single-field’’ representation where we modify the gov-

erning differential equations such that we recover the

original equations inside each phase (Eqs. (1)–(3)) and

also satisfy the jump conditions at the interface (see,

Appendix A). This leads to the following equations for

the momentum and the thermal energy equations,

respectively.

oq�u
ot

þr � q�u�u ¼ �rp þ q�g þr � lðr�uþr�uT Þ

þ r
Z
F

dð�x� �xfÞjf�nf dAf ; ð7Þ

oqcT
ot

þr � qc�uT ¼ r � krT � 1� ðcv � clÞ
T sat

hfg

� �



Z
F

dð�x� �xfÞ _qf dAf : ð8Þ

Here, d is a two- or three-dimensional delta function

which is constructed by repeated multiplication of one-

dimensional delta functions. �x is the point at which the

equation is evaluated and �xf is the position of the front.

The quantities with the subscript of f are evaluated at

the front.

The Navier–Stokes and energy equation are supple-

mented by the mass conservation equation. In the past,

we have solved the governing equations of multiphase

fluid without phase change using a second order

projection method (see, e.g., [30]). If there is no phase

change, Eq. (1) is reduced to r � �u ¼ 0 for incompressi-

ble flows and the resulting equation perfectly fits in

our projection method. Here, incompressibility is satis-

fied within each phase but does not hold at the interface

because of fluid expansion. However, it is still possible to

rewrite Eq. (1) in a form that is compatible with our pro-

jection method. To do so, we note that the velocity field

can be written as

�u ¼ �uvI þ �ulð1� IÞ; ð9Þ

where I is an indicator function (i.e., a Heaviside func-

tion) which is one in the vapor and zero in the liquid.

Notice that this relation implies that the velocity in each

phase has a smooth incompressible extension into the

other phase. The gradient of the indicator function is

zero everywhere except at the interface. Thus, we can

express this gradient in terms of the front properties
rI ¼
Z
F

dð�x� �xfÞ�nf dAf : ð10Þ

Taking the divergence of Eq. (9), using Eq. (10), and

noting that r � �uv ¼ r � �ul ¼ 0 yields

r � �u ¼
Z
F

dð�x� �xfÞð�uv � �ulÞ � �nf dAf : ð11Þ

The difference between the velocity of the liquid and the

velocity of the vapor can be related to the evaporation

rate by elimination of �uf in Eq. (4) and noting that

_m ¼ _q=hfg

ð�uv � �ulÞ � �n ¼ _qf
hfg

1

qv

� 1

ql

� �
: ð12Þ

Inserting the expression for the velocity difference across

the phase boundary from this equation into Eq. (11)

yields the following mass conservation equation

r � �u ¼ 1

hfg

1

qv

� 1

ql

� �Z
F

dð�x� �xfÞ _qf dAf : ð13Þ

Note that Juric and Tryggvason [1] formulated the mass

conservation equation slightly differently.

In summary, the governing equations to solve for are

Eqs. (7), (8), and (13). These equations are solved by a

second order space–time accurate front tracking/finite

difference method on a staggered grid. The time integra-

tion proceeds in two steps using a predictor–corrector

scheme. In the next section, we first discuss a first order

time integration and explain the modification to make

the scheme second order afterward.

2.2. Numerical method

The phase boundary is represented by a collection of

triangular elements in three-dimensions and line seg-

ments in two-dimensions. These elements are linked to-

gether by a linked-list and are used to pass information

between the stationary grid and the phase boundary. At

the beginning of each time step, we need to know the

indicator function. This is achieved by noting that the

gradient of indicator function (Eq. 10) can be computed

from the front position. We take the divergence of this

equation to obtain a Poisson equation for the indicator

function

r2I ¼ r � rI ¼ r �
Z
F

dð�x� �xfÞ�nf dAf : ð14Þ

The right-hand side of this equation is computed by

finding �nf dAf for each front element using a surface fit-

ting (curve fitting in two-dimensions) and distributing it

to the stationary grid using a smoothed delta function

[29]. This equation is solved by a fast Poisson solver

[31] and the fluid property fields /n � (qn,ln,kn,cn) are
found at the current time using /n = /vI

n + /l(1 � In),

n being the time index. Next, we set the initial velocity
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and the temperature fields. The heat source _qf is found
using the method of Udaykumar et al. [32] by computing

the right-hand side of Eq. (6) using a first order finite dif-

ference approximation.

_qf ¼
1

D
½kvðT v � T satÞ � klðT sat � T lÞ; ð15Þ

where Tl and Tv are the temperature of the liquid and

vapor near the phase boundary at the liquid �xl and the

vapor side �xv. Tsat is the given interface temperature

and Tl and Tv are found by interpolating the tempera-

ture at �xl ¼ �xf � D�nf and �xv ¼ �xf þ D�nf using two normal

probes which originate at the phase boundary and ex-

tend a distance D into the liquid and the vapor. Here,

�x ¼ ðx; y; zÞ and is measured with respect to a fixed coor-

dinate frame. We have also experienced with a second

order finite difference approximation of Eq. (6) and

found no appreciable difference. Numerical experiments

showed that the results are insensitive to the length of

normal probes as long as h 6 D 6 2h, h being the grid

spacing. Having found _qf , the last term in Eq. (8) is then

computed and distributed to the grid points using the

Peskin�s distribution function [29].

In the method of Juric and Tryggvason [1], the heat

source was found by iteratively adjusting it until the

interface temperature at the end of each time step was

correct. Using the procedure described here eliminates

this iteration. To move the phase boundary, we simply

integrate:

d�xf
dt

¼ un�nf ; ð16Þ

in time, where un ¼ �uf � �n. The normal velocity of the

phase boundary can be found from Eq. (4) in conjunc-

tion with Eq. (6)

�uf � �n ¼ 1

2
ð�ul þ �uvÞ � �n�

_qf
2hfg

1

ql

þ 1

qv

� �
: ð17Þ

As is evident from Eq. (17), the normal velocity of the

phase boundary has two components; one due to fluid

advection (the first term) and another one due to phase

change (the second term). The first term is found by the

Peskin�s interpolation [29] and the second term is found

using Eq. (15). Once the right-hand side of Eq. (16) is

known, a simple integration of this equation results in

the position of the front at the next time step,

�xnþ1
f ¼ �xnf þ Dtun�nf . The indicator function at the new

position In+1 is then computed from Eq. (14) and the

density and the heat capacity fields at the next time step,

qn+1, cn+1, are found. This computation is necessary due

to the use of the conservative form of the momentum

and the energy equation which demands knowledge of

q and c at the next time step n+1. Advection of the point

is also a necessary step for implicit computation of sur-

face tension (i.e., curvature is calculated at the next time

step; jn+1 rather than jn) which eliminates a capillary
time step constraint. At this point, we have all the infor-

mation to integrate the energy equation. The energy

equation in a semi-discretized form reads

qnþ1cnþ1T nþ1 � qncnT n

Dt
¼ An; ð18Þ

where A represents the right-hand side of Eq. (8) which

contains the advection, the diffusion, and the source

term. The new temperature field is easily found to be

T nþ1 ¼ DtAn þ qncnT n

qnþ1cnþ1
: ð19Þ

To solve the Navier–Stokes equation, we need to com-

pute the surface tension term in Eq. (7) at the new posi-

tion of the front, �xnþ1
f . This is done by computing the

jf�nf dAf for each front element using a local surface fit-

ting in three-dimensions which involves the marked ele-

ment and its three closest neighbors. In two-dimensions

this is achieved by a curve fitting involving the marked

element and its left and right neighbors. The surface ten-

sion is then distributed to the stationary grids using the

Peskin�s distribution function. The momentum equation

in semi-discretized form is

qnþ1�unþ1 � qn�un

Dt
¼ �rp þB; ð20Þ

where the advection, the diffusion, the gravitational

body force, and the surface tension force are denoted

by B. We then use a projection method and split the

above equation into

qnþ1~�u� qn�un

Dt
¼ B; ð21Þ

and

qnþ1�unþ1 � qnþ1~�u
Dt

¼ �rp: ð22Þ

Here, ~�u is a provisional velocity field which is calculated

in the absence of the pressure. In the first step, Eq. (21) is

solved for ~�u and in the second step an equation is found

for the pressure by taking divergence of Eq. (22)

r � 1

qnþ1
rp ¼ r � ~�u�r � �unþ1

Dt
ð23Þ

Next, we substitute for r � �unþ1 from Eq. (13) into Eq.

(23). The pressure equation is solved by a multigrid sol-

ver developed by Adams [18]. Once the pressure is

found, the velocity at the next time step is found from

Eq. (22).

The time integration is made second order by using a

predictor–corrector algorithm. Here, we are concerned

with Eqs. (16), (18) and (20). If we consider w to repre-

sent �xf , qcT, or q�u, then these equations can be expressed

as ow=ot ¼ F, where F represents their right-hand

sides. This equation can be discretized in the predictor

step as ðwnþ1
p � wnÞ=Dt ¼ Fn and a simple integration re-



A. Esmaeeli, G. Tryggvason / International Journal of Heat and Mass Transfer 47 (2004) 5451–5461 5455
sults in wnþ1
p ¼ wn þ DtFn. The correction step should

yield wnþ1
c ¼ wn þ ðDt=2ÞðFn þFnþ1

p Þ. In programming,

we store values of wn at each time step and calculate

wnþ2 ¼ wnþ1
p þ DtFnþ1

p . We then compute wnþ1
c ¼

1=2ðwn þ wnþ2Þ.
In some boiling problems, there are relatively small

regions of the computational domain that need a very

fine grid because of presence of a steep temperature

or velocity gradients, while a moderate grid is sufficient

for the rest of the domain. For example, in film boiling

of water at atmospheric pressure and at a low wall

superheat, with the exception of the film thickness,

the entire flow field can be accurately resolved with a

128 points grid per kd2 ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r=ðql � qvÞg

p
, where kd2

is the most dangerous two-dimensional Taylor inviscid

wavelength. On the other hand, the film thickness is

about 0.004kd2. Assuming that four grid points will rea-

sonably resolve the film thickness, a uniform grid reso-

lution of 1000 per kd2 will be needed to resolve the

entire domain. To simulate such flows in a computa-

tionally efficient way, one possible approach is to use

a nonuniform grid where grids are clustered inside the

film but a relatively coarse grid is used outside the film.

We have modified our method for this purpose and

introduced two sets of coordinates; the unmapped

(nonuniform) one (x,y,z) and a mapped (uniform)

one (n(x),g(y),f(z)). The Navier–Stokes and energy

equations are solved on the mapped grid where these

equations turn out to be formally the same as those

on a uniform grid but with uniform cell spacings re-

placed with the corresponding nonuniform ones. Here,

it is still possible to solve the Poisson equation for the

indicator function (Eq. 14) on the unmapped grid.

However, the pressure Eq. (23) is solved on the mapped

grid and its formal expression is slightly different from

the corresponding one for the unmapped grid. Further-

more, the Peskin�s distribution and interpolation ker-

nels [29] are now defined with respect to the mapped

(uniform) coordinate while the forces are found in the

unmapped grid. The interface points are moved by

interpolating their velocities on the mapped grid using

Eq. (16).
3. Results

In this section we show how our numerical results

compare with a few analytical solutions. We also present

a grid resolution study for film boiling on a horizontal

plate and discuss how our results compare with other

computational results. Due to the nonlinear behavior

of boiling flows, analytical solutions are only available

for a few simple cases. For a comparison with other ana-

lytical solutions see Esmaeeli and Tryggvason [10], and

for comparison with experimental results see part II of

this study [20].
3.1. Free falling flow of a liquid/vapor layer along an

inclined channel

We first study the heat transfer and fluid flow of a liq-

uid/vapor layer falling along an inclined channel of a

finite width. Here, the vapor is at the top and the liquid

is at the bottom. The temperatures of the upper and

the lower walls are Tv and Tl, respectively, where Tl

< Tsat < Tv. This problem has a steady-state solution

and was considered as the basic state by Huang and

Joseph [26] in their instability analysis of a liquid/vapor

interface during evaporation. Initially, the interface

moves toward the lower wall as a result of the evapora-

tion. At steady-state, the velocity and the temperature

field is fully-developed and the heat fluxes at both sides

of the interface are equal. As a result, phase change is

stopped and the interface remains stationary thereafter.

To study this problem, we used a 1 · 1 domain resolved

by a 32 · 32 grid. The fluid properties were qv = 0.25,

ql = 2.5, lv = 0.007, ll = 0.098, kv = 0.0035, kl = 0.056,

cv = cl = 1, r = 0.3 and hfg = 100. Gravity was set to

g = 2 and the slope of the channel was chosen to be

h = 30� (h = 0� corresponds to a horizontal wall and

h = 90� corresponds to a vertical wall). The temperatures

were set to Tv = 4, Tl = � 1, and Tsat = 0. The initial

position of the interface was y = 0.8 with respect to a

coordinate attached to the lower wall. The simulation

was continued until the system reached a steady-state

(i.e., y = 0.5). Fig. 1 compares the numerical and analyt-

ical horizontal velocity profile, the pressure, the temper-

ature, and the interface position at the steady-state. The

agreement between the numerical and the analytical re-

sults are good and the relative error is less than 1% in

all the cases.

3.2. Rayleigh–Taylor instability with heat and mass

transfer

Our next test problems is the Rayleigh–Taylor insta-

bility of a liquid/vapor interface. Here, the interface

position was at y = 0 and the vapor and liquid occupied

the lower (Hv 6 y 6 0) and the upper (0 6 y 6 Hl) re-

gion of a horizontal channel, respectively. This problem

has been studied analytically by Hsieh [22,23] and Hsieh

and Ho [24] in the inviscid limit and by Ho [25] and

Adham-Khodaparast et al. [19] in the viscous limit.

The solution of the momentum and the energy equation

for the basic state results in a quiescent flow and a linear

temperature profile in the vapor Tv(y) = Gvy + Tsat and

the liquid Tl(y) = Gly + Tsat. Here, Gv = (Tv � Tsat)/Hv

and Gl = (Tl � Tsat)/Hl are temperature gradients in the

vapor and the liquid; Tv and Tl being the temperature

of the lower and the upper wall, respectively. Since the

flow is quiescent, no phase change takes place at the

equilibrium. As a result, the heat fluxes in the liquid

and vapor are equal; _qeq ¼ klGl ¼ kvGv. For a small
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perturbation around the basic state, Hsieh [22] showed

that, for inviscid flows, the evaporation at the interface

reduced the growth rate of the instability. However,

the critical wave number remained the same as the clas-

sical one. When viscosity is taken into consideration, Ho

[25] showed that evaporation leads to a critical wave

number k*,

k� ¼ 4a2m2

r2
þ k2c

� �1=2

� 2am
r

;

which is smaller than the classical one;

kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðql � qgÞg=r

q
. Here, a ¼ _qeq=hfgð1=H v þ 1=H lÞ is

a measure of heat and mass transfer at the interface as

defined by Hsieh [22].

To study this problem, we used a two-dimensional

domain of size (Wx,Wy) = (1,2) and a grid resolution

of 64 · 128. Other parameters were ql = 2.5, qv = 0.25,

r = 0.3, ll = 0.001, lv = 0.0001, hfg = 0.065, g = 12,

Tsat = 0, and Hl = 1, Hv = � 1. The initial interface posi-

tion was chosen to be y = �0.0005cos (2px). Thus, the
wavenumber and the wavelength of the initial perturba-

tion were k0 = 2p and k0 = 1, respectively. We carried

out two sets of computations, one with phase change

and another one without phase change. In the former,

we set Tv = Tl = Tsat = 0 and in the latter we set

Tv = 5, Tl = � 1, and Tsat = 0. This resulted in a = 0
for the former and a = 3.25 for the latter. For a = 3.25

case, the initial temperature field was also set to the tem-

perature profile at the basic state. Fig. 2a compares the

dispersion relation (i.e., growth rate versus initial wave

number) for these two cases. The circles on the curves

correspond to the operating conditions of this study.

For this set of parameters, the cut off wave numbers

for both cases are nearly the same but the growth rate

for a = 0 is n = 5.81 and for a = 3.25 is n = 4.71 which

is about 23% lower than that of the classical one, reflect-

ing the fact that evaporation stabilizes the instability. To

calculate the numerical growth rate nN, we measured the

instantaneous amplitude of the wave A(t) and plotted

lnA(t) versus time. If A(t) = A0exp(nNt), A0 being the

maximum initial amplitude, then nN will be the slope

of lnA(t) versus t curve. The measured growth rate from

Fig. 2b is nN = 5.85 and 4.68 for a = 0 and a = 3.25,

respectively. This results in a 0.69% and 0.64% relative

error. Similar tests in other regions of the k � n space

yielded relative errors in the above range.
3.3. Evaporation of a superheated liquid

The purpose of this test was to check the accuracy of

our numerical scheme in simulating problems with steep

temperature gradients at the phase boundary. The moti-
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with and without the phase change. Here, the initial wave

number is 2p.
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vation for this test comes from the fact that our energy

solver is very sensitive to the computation of the temper-

ature gradients at the phase boundary. In a typical phase

change problem, a thermal boundary layer is usually

formed at the phase boundary which results in a temper-

ature gradient at he interface. If the thermal boundary

layer grows in the course of the computations, as is

the case in stable evaporation of a liquid/vapor layer,

for example, the computations of the temperature gradi-

ent do not pose much difficulty. However, if the thermal

boundary layer remains thin, then its accurate computa-

tions is a challenge for a numerical method. Here, we

consider such a problem by investigating a test problem

similar to the one used by Welch and Wilson [8].

Consider a large pool of liquid at temperature

T1 > Tsat resting on a solid wall. At time t = 0, the wall

temperature is set to Tsat and as a result the liquid starts
to evaporate. Since the liquid is superheated, it is in a

metastable state and heat is transferred at the interface

from the liquid to the vapor. Conservation of mass re-

sults in ov/oy = 0 in both fluids. However, since the

vapor layer is confined by the wall, no-through flow

condition results in vv = 0. vl(t) is uniform in the liquid

layer and is set by the evaporation rate at the interface.

Energy analysis for the vapor layer results in T(y, t) =

Tsat and the energy equation in the liquid can be cast

to an ODE by using similarity transformation. This

equation is solved numerically (see [8]) and its solution

results in the temperature field and the interface posi-

tion. We also tested the solution of the ODE by setting

the densities equal, where it is possible to derive a closed

form analytical solution. Thus, bulk motion is zero in

both phases and solution of the energy equation in the

liquid gives T ðy; tÞ ¼ T1 þ ðT sat � T1Þerfc ðy=2 ffiffiffiffiffi
alt

p Þ=
erfcðcÞ, where c is a root of the transcendental equation

c expðc2Þerfc ðcÞ ¼ clðT1 � T satÞ=ðhfg
ffiffiffi
p

p
Þ. The interface

position, also found as part of the solution, is

dðtÞ ¼ 2c
ffiffiffiffiffi
alt

p
, al being the liquid thermal diffusivity.

To eliminate the confinement effect, we picked a

1 · 10 domain. Other parameters were d(t0) = 0.1,

Tw = Tsat = 0, T1 = 0.5, hfg = 1.0, ql = 2, qv = 0.2,

ll = 0.1, lv = 0.01, kl = 0.1, kv = 0.01, and cl = cv = 0.2.

The temperature field was initialized using the tempera-

ture field from the solution of the ODE at t = t0. To

check the convergence rate of our results, we used grid

resolutions of 16 · 160, 32 · 320, and 64 · 640.

Although the problem is one-dimensional, the computa-

tions were carried out in two-dimensions and one-

dimensional results were extracted by integrating the

results in the horizontal direction. The computations

were stopped before the top of the domain was affected

by the thermal boundary layer. In Fig. 3a we compare

the instantaneous interface locations from the computa-

tions at all the grid resolutions with the exact interface

location. The exact and the computed solutions on

64 · 640 grid points are very close, reflecting the fact

that the solution is well-converged on this grid. In Fig.

3b we make a similar comparison between the numerical

and the exact liquid temperature field at a late time

where it is seen that the difference between the numerical

results at the finest grids and the exact solution is very

small. The convergence rate was checked by computing

the L2 norm of the temperature field and the interface

location and plotting these quantities on a log–log scale.

As we expected, the front tracking method exhibits be-

tween linear and quadratic convergence (see, e.g., [27]).

3.4. Film boiling

We now turn to film boiling on a horizontal surface

where a thin vapor layer covers a heated plate and phase

change takes place at the liquid/vapor interface. The

computational setup used in this study is depicted in



Fig. 4. Evolution of a liquid/vapor interface and velocity field during

left to the right and the times are 0, 8.38, and 16.76. Here, Pr = 4.2,

qv/ql = 0.21, lv/ll = 0.386, kv/kl = 0.28, and cv/cl = 1.83. The domain

Fig. 3. Comparison of numerical and exact results for evapo-

ration of a superheated liquid: (a) Interface position and (b)

temperature profile at a late time.
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the first frame of Fig. 4. An initially quiescent liquid

pool rests on a hot, horizontal surface, blanketed by a

thin vapor film. Initially, both the vapor and the liquid

are at saturation temperature. Periodic boundary condi-

tions are imposed at the horizontal boundaries, no-slip/

no-through-flow condition at the bottom, and outflow

condition at the top. The bottom wall is at a constant

temperature Tw > Tsat and the vertical temperature gra-

dient is set to zero at the top wall. As the liquid evapo-

rates, the liquid/vapor interface becomes unstable and

bubbles are formed. At low superheats, the bubbles

readily break off from the layer and rise. However, at

high superheats where the vapor production is high,

the bubbles are replaced by steady jets of vapor.

The governing dimensionless parameters for this

problem are Gr, Pr, Ja (as defined on the nomenclature),

and the ratio of thermophysical properties. Here, the

individual parameters are chosen so that:

Pr ¼ 4:2; Gr ¼ 17:85; Ja ¼ 0:064;

qv

ql

¼ 0:21;
lv

ll

¼ 0:386;
kv
kl

¼ 0:28;
cv
cl

¼ 1:83:

Except for the Grashof number, these parameters

correspond to those of water at psat = 169bar. Notice

that we report the liquid properties since the method

and the code have been developed for the general case

where liquid could be initially subcooled.

The domain size in the horizontal directions must be

equal or greater than the most dangerous three-dimen-

sional wavelength kd3. Lao et al. [28] showed that kd3
for a horizontal flat surface is given by

ffiffiffi
2

p
kd2. The depth

of the liquid must also be large enough to accommodate

the growth of the vapor jets. Here, we use a
film boiling process at Ja = 0.064. The frames proceed from the

Gr = 17.85, Ja = 0.064 and the ratio of material properties are

size is kd3 · kd3 · 2kd3 and the grid resolution is 96 · 96 · 192.



Fig. 5. Grid resolution test: (a) comparison of phase boundary

before the first bubble release, and (b) hNui as a function of

time. Here, Pr = 4.2, Gr = 17.85, and Ja = 0.064. The ratio of

thermophysical properties are qv/ql = 0.209, lv/ll = 0.386,

kv/kl = 0.281, and cv/cl = 1.830.
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kd3 · kd3 · 2kd3 domain and a grid resolution of

96 · 96 · 192. The initial film thickness is perturbed

slightly and is given by:

z ¼ zc þ �½cosð2pNx=W xÞ þ cosð2pNy=W yÞ;

where, zc, �, N, Wx, and Wy are the unperturbed film

thickness, perturbation amplitude, perturbation wave

number, and domain size in the x and the y direction,

respectively. We take � = � 0.05kd3, Wx =Wy = kd3,
zc = 0.125kd3, and N = 1. This perturbation leads to a

symmetric hump at (x,y) = (0.5kd3,0.5kd3) as shown in

the first frame of Fig. 4. The phase boundary is initially

resolved by 46,818 triangular elements. The second and

the third frames of the figure show the phase boundary

and the velocity field, plotted at every third grid point,

at an early and a late time. Initially, the hydrostatic pres-

sure is maximum at the valley and minimum at the peak.

This pressure difference results in a downward motion of

the fluid near the valley and an upward motion near the

peak and the formation of the two counter-rotating vor-

tices on the sides of the vapor bulge. It also results in a

horizontal motion of vapor from the valley toward the

peak. The temperature profile in the film is approximately

linear, changing from Tw at the wall to Tsat at the phase

boundary. Therefore, the local heat flux is inversely pro-

portional to the film thickness. As a result, as the interface

moves closer to the wall, the local heat flux increases

which in turn leads to further vapor production and pre-

vents the liquid from wetting the wall. The top of the

vapor dome continues to grow but evaporation prevents

further thinning of the valley. The horizontal motion of

the liquid near the interface widens the base of the vapor

bulge and results in a mushroom-shaped bubble.

To ensure that our multimode results are well-con-

verged, we perform a grid refinement study for a two-

dimensional system. The two-dimensional system has

the same nondimensional numbers as those of the

three-dimensional one and is simulated in a kd2 · 2 kd2
domain with grid resolutions of 32 · 64, 64 · 128,

128 · 256, and 256 · 512 points. The film thickness is

given by

y ¼ yc þ � cosð2pNx=W Þ;

where yc = 0.125kd2, � = � 0.05kd2, N = 1, W = kd2. We

also include another vapor layer on top of the liquid

layer to allow rising bubbles to break through. The posi-

tion of the second interface is at 1.25kd2. Fig. 5a com-

pares the phase boundaries prior to the first bubble

break off (t = 12.55) for these grids. The convergence is

very good at the base, even for the lowest grid. However,

the bubble size and the vapor jet is different for the

coarsest grid, but converges as the grid resolution is

increased.

The Nusselt number is very sensitive to the resolution

of the film. Its convergence under grid refinement is,

therefore, a good indication of the convergence of the re-
sults. In Fig. 5b we compare the space-averaged Nusselt

number, defined as

hNui ¼ � ls
W DT

Z W

0

oT
oy

����
w

dx;

for these grids. The Nusselt number is initially high be-

cause of large temperature difference between the wall

and the vapor in the film. When the vapor begins to

warm up, the temperature gradient at the wall drops

down and hNui decreases. The Nusselt number, how-

ever, starts to increase again as a bubble is formed and

the average film thickness starts to decrease. The figure

shows convergence of hNui under the grid refinement.

We have continued the run on the 64 · 128 grid

and the one on the 128 · 256 grid up to ~t ¼ 279 (i.e.,

over seven bubble release period) and calculated the



Table 1

Canonical form of the conservation equations

Equation / w S

Mass q q�u 0

Momentum q�u q�u�u� s þ pI q�g
Energy qcT qc�uT � krT 0
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time-averaged Nusselt number defined as hNui ¼ 1=
Dt

R te
ti
hNuidt, where Dt = te � ti, and ti and te are the

beginning time of the steady-state and the end-time of

the simulation, respectively. The results are 2.19 for

the 64 · 128 grid and 2.08 for the 128 · 256 grid, or

about 5% relative error. Fig. 5b suggests that the differ-

ence between the 128 · 256 grid and even finer grids

would be much smaller.

3.5. Other tests

We have also tested our code by comparing our re-

sults with the film boiling simulation in Fig. 12 of Welch

and Wilson [8] and Fig. 2 of Juric and Tryggvason [1].

These simulations correspond to evaporation of Hydro-

gen and para-Hydrogen at 8atm. We used the same ini-

tial conditions and comparable grid resolutions. In both

cases the interface evolved into a similar mushroom

shape. We measured the dimensions of the mushroom

(i.e., height, length of the arms, etc.) and found a good

agreement between our results and theirs.

The method described here has been used to study

multimode film boiling on horizontal surfaces [20],

explosive boiling [10], and boiling in complex geometries

[21]. In all of these problems, the qualitative behavior of

the interface, temperature field, and the velocity field

were similar to those observed in experiments. The

agreement between the numerical results and experimen-

tal results were also good, in those cases when it was

possible to make such comparisons [10,20].
4. Conclusion

A front tracking/finite difference technique for com-

putations of boiling flows is presented. The method is

based on the so-called ‘‘single-field formulation’’ where

one set of the conservation equations is written for both

phases. The method and the code was validated by com-

paring the numerical results with a few analytical solu-

tions and a grid refinement study of film boiling on a

horizontal plate.
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Appendix A. Detail of derivation of the single-field

equations

The governing Eqs. (1)–(3) can be written in the fol-

lowing canonical form
o/
ot

þr � w ¼ S; ðA:1Þ

where / is the conserved quantity, w is a combination of

its flux and some other fluxes, and S is a source term as

shown in (Table 1). Integration of (A.1) over a vanish-

ingly small volume which encloses the phase boundary

and is moving with the phase boundary leads to

½½/lvun ¼ ½½wlv � �n; ðA:2Þ

as the corresponding jump condition of the conservation

equation (see [33], for example). Here, un ¼ �uf � �n. These
are the so-called Rankine–Hugoniot or shock conditions

and may be considered as ‘‘pseudo’’ jump conditions

since they do not take into account interfacial quantities

such as surface tension and latent heat. Thus, the ‘‘true’’

jump conditions are Eqs. (4)–(6) which are derived di-

rectly by writing the balance laws at the interface.

Application of Eq. (A.2) to Eqs. (1)–(3), and some

algebraic manipulations, result in the following pseudo

jump conditions:

qlð�ul � �ufÞ � �n ¼ qvð�uv � �ufÞ � �n ¼ _m; ðA:3Þ

_mð�uv � �ulÞ ¼ ðsv � slÞ � �n� ðpv � plÞI � �n; ðA:4Þ

_mðcv � clÞT sat ¼ kv
oT
@n

����
v

� kl
oT
on

����
l

: ðA:5Þ

Comparison of Eqs. (A.3) and (4) shows that the true

and pseudo jump conditions are the same for conserva-

tion of mass, as expected. On the other hand, compari-

son of the true and pseudo jump conditions for the

momentum and energy shows that rj�n and

_mððcv � clÞT sat � hfgÞ are missing in the pseudo jump

equations of momentum and energy, respectively. These

terms are supplemented to Eqs. (2) and (3) by using a

delta function which is nonzero at the phase boundary

and diminishes away from the interface. Notice that

we have used _m ¼ _q=hfg in the energy equation and also

taken advantage of the fact that the thermophysical

properties such as cl, cv, and r are constant.
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